IMPROVE MENTS AND LIMTS IN THE USE OF AN INFRARED CAMERA FOR PAVEMENT THERMAL MAPPING

M. Marchetti, M. Moutton, S. Ludwig CETE de l'Est – LRPC Nancy-ERA 31 L. Ibos, J.-P. Monchau, V. Feuillet Université Paris Est-CERTES J. Dumoulin Université Paris Est-IFSTTAR-MACS division

CETE

Est

IESTTAR

AITA - 2011, 9th-11th of September - Florence

Présent pour l'avenir

Ministère de l'Écologie, de l'Énergie, du Développement Durable, des Transports et du Logement

Summary

- 1- Objectives
- 2- Implementation of infrared camera
- 3- Results Winter risk estimations
- 4- Conclusion Perspectives

1- Objectives

Context:

- Instrument on a vehicle to establish road susceptibility to ice

- Measurements on one lane at a time \Rightarrow tests too long
- Measurements on a small spot (radiometer FOV 20°)
- No appreciation of road radiative environment

Objectives:

- Implement an IR camera on a vehicle,
- Analyze several lanes simultaneaously,
- Compare results from the IR camera and a radiometer,
- Improve winter risk definition

2- Implementation of IR camera

Radiometer PRT5 (BARNES Pyrometer) (reference):

Detector type: bolometer Spectral band: 9.5 - 11.5 µm Temperature range: -40°C to + 70°C Sensitivity: 0.1°C below 0°C, 0.05°C above 0°C Accuracy: $\pm 0.5^{\circ}C$ FOV: 20° Response time: 50 ms NET : 0.005 for a time response of 50 ms on a body at 25°C

IR Camera FLIR S65 :

Detector type: uncooled microbolometer 320x240 matrix IRFPA Spectral band: 7.5 - 13 µm Temperature range: -40°C to + 120°C Sensitivity: 0.08°C Accuracy : \pm 2 % of the measurement FOV: 24°x18° (HxV) (35 mm focal lens) IFOV : 1,3 mrad

atmospheric probes

radiometer

Thermal mapping vehicle

Scheme of the camera installed on the vehicle

IR images (-50°C<T<+10°C)

Itinerary characteristics

- 30 km long
- local & main roads, highways

Data acquisition

- atmospheric parameters every 3 m
- thermal images every 12 m (native format)
- maximum speed 70 km/h \approx 44 mph
- LabVIEW[®] interface

Choice of an appropriate data analysis areas

(not directly affected by traffic)

- for emissivity correction
- for evaluation of transverse winter risk

IR images (-50°C<T<+10°C)

Use of several regions of interest (ROI):

- ROI dedicated to road pavement
- Introduction of a "mirror" for environment correction (ε =0.063)
- Introduction of Nextel Velvet 811-21 as an emissivity reference (ε =0.97)

Distance offset betwen data from the radiometer and data from the IR camera (offset \approx 12 m)

Thermal images triggered in "snapshot" mode every 12 m

- integration time of a few ms \Rightarrow slight blur in the images over 2 pixels
- compensation with ROI size >> blur size

Atmospheric parameters (T_{air}, relative humidity) as inputs in the IR camera

Thermal images sequence of the Itinerary

Results after radiometric corrections

emissivity correction to be improved over the pavement ROI \Rightarrow emissivity distribution over pavement ROI

Observation angle:

 $\alpha_{average} \approx 7^{\circ}$ $\alpha_{min} \approx 4^{\circ}$ $\alpha_{max} \approx 11^{\circ}$

Gaussorgues, 1981

Small angle reduction or increase = large emissivity change

3.2. Winter risk index. Consistency with seasons and infrastructure

Approach based on a moving average

 $WR = 2.WR(T_s) + WR(T_d),$ with $WR(T_s) = 0$ if $0^{\circ}C \le T_{s,moving average} - T_s < 0.5^{\circ}C$; 1 if $0.5^{\circ}C \le T_{s,moving average} - T_s < 1^{\circ}C$; ... and $WR(T_d) = 0$ if $0^{\circ}C \le T_{d,moving average} - T_d < 0.5^{\circ}C$; 1 if $0.5^{\circ}C \le T - T_{d,moving average} < 1^{\circ}C$; ...

3.3. Evaluation of a transverse winter risk index

Continuous rolling of vehicles wheels \Rightarrow thermal specificity of wheel tracks

Additional investigation on the existence of a transverse winter risk (preferential wearing of the asphalt concrete in this part of pavement surface)

use of several points to identify transverse variations

- between wheel tracks - wheel track

No significant detected difference except for specific spots Analysis very local \Rightarrow disappearance of WR in the wheel track with respect to the situation between the wheel tracks compensated by the occurrence of new WR elsewhere

AITA - 2011, 9th-11th of September - Florence

4- Conclusion. Perspectives

Efficiency of the implementation of an IR camera for thermal mapping

Radiometric corrections :

- emissivity corrections / grazing angle
- signal weakening / distance camera pavement

- detailed analysis of measured differences / radiometer

(nature structures, radiative environment)

Improvements already implemented

- better IR camera position (several lanes monitored)
- increased data acquisition frequency

Thanks for your attention

additional contacts:

mario.marchetti@developpement-durable.gouv.fr jean.dumoulin@ifsttar.fr ibos@u-pec.fr

Liberté + Égalité + Fraternité République Française

CETE

Est

UNIVERS

IFSTTAR

AITA - 2011, 9th-11th of September - Florence

sources, territoires et habitats

Présent pour l'avenir

Ministère de l'Écologie, de l'Énergie, du Développement Durable, des Transports et du Logement