Bagneux, le 12 AVR, 1999

Monsieur Le Responsable Gestion de la Route
Direction Départementale de l'Equipement

OBJET : Viabilité hivernale/Fondants routiers.
Commande des DDE pour l'hiver 1999-2000
P.J. : Note technique

Chaque hiver, l'ensemble des services d'exploitation des routes et autoroutes mettent en œuvre des fondants routiers pour assurer la viabilité hivernale de leur réseau. Chaque année 500 à 1400 kT de fondants routiers, pour l'essentiel du chlorure de sodium (norme NF P 98 180), sont ainsi répandus sur le territoire français.

Aujourd'hui certains industriels cherchent à valoriser leurs sous-produits et co-produits salins comme fondants routiers, d'autres proposent des produits nouveaux ayant des fonctionnalités nouvelles (inhibiteur de corrosion, non polluant, coloré etc...).

A l'heure de la préparation des achats de fondants pour la prochaine période hivernale, je tiens à attirer votre attention sur les problèmes que peut poser l'utilisation de ces produits surtout si leurs caractéristiques, en particulier leur composition et leur régularité ne sont pas connues précisément.

Les points suivants sont à souligner tout particulièrement :
- en premier lieu, l'épandage sur la route d'un produit dans des conditions hivernales peut générer des zones glissantes ponctuelles ou étendues.
- en second lieu, dans la composition des produits peuvent entrer des éléments nocifs que ce soit pour l'environnement ou la santé publique.

Aussi, les précautions suivantes sont à prendre :
- avoir recours au chlorure de calcium sous forme de paillette ou sous forme de saumure *qu'exceptionnellement* (voir note jointe) en veillant au niveau d'adhérence de la chaussée lors de sa mise en service (condition de circulation C1),
- en l'absence de procédure (en cours d'élaboration) d'évaluation technique, ne pas utiliser de coproduits ou sous-produits industriels comme fondants routiers.

Centre de la Sécurité et des Techniques Routières
46, avenue Aristide Briand - BP 100 - 92223 Bagneux Cedex - France - Tél. : 01 46 11 31 31 - Fax : 01 46 11 35 43
Le réseau technique Viabilité Hivernale animé par le SETRA ayant acquis depuis plusieurs années des connaissances techniques et un savoir-faire dans ce domaine, je vous engage fortement à vous rapprocher de lui dès lors que vos services envisageront l'utilisation de fondants non conventionnels.

Le Chef du Département Conception,
Réalisation et Entretien des Routes

Y. CHARGROS
1.

Dans l'état actuel des connaissances, la démarche suivie à ce jour

Les exigences croissantes des deux dernières décennies dans le domaine de l'exploitation des chaussées routières et autoroutières ont conduit les exploitants de réseaux à une montée en puissance des moyens matériels, technologiques et humains.

La nécessité d'assurer la protection de l'environnement se traduit aujourd'hui par de nouvelles exigences que seule une approche globale du service hivernal permettra de résoudre.

En matière de fondants, la stratégie des Services Techniques de l'Equipement et des Transports a consisté, pour le domaine routier, à organiser la boucle de qualité des fondants traditionnels en améliorant les diverses étapes qui permettent de passer de l'élaboration du produit à son utilisation finale.

La norme de spécification du NaCl\(^1\) utilisé comme fondant routier précise les exigences sur le produit. Cela a permis de réorganiser le stockage initial et parfois le transport, puis le stockage final effectué de plus en plus souvent sous abri avant reprise pour épandage. Les travaux de normalisation des matériaux d'épandage qui sont en cours complètent le dispositif.

Les travaux actuels pour la mise en place d'essais de performance devraient constituer à l'avenir un ensemble de solutions pour mieux canaliser les produits fondants non conventionnels, pour le domaine routier.

\(^1\) NF P 98-180 Viabilité Hivernale - Le chlorure de sodium utilisé comme fondant routier
2. **Le chlorure de calcium**

Le chlorure de calcium \(\text{CaCl}_2 \cdot 2\text{H}_2\text{O} \) est un fondant ionique dihydraté dont les propriétés physiques peuvent justifier son emploi pour le traitement hivernal des chaussées lors de situations particulières, où le chlorure de sodium conventionnellement utilisé, ne serait plus efficace.

Ce produit est commercialisé sous forme de paillettes solides ou de saumure au titre massique de 32%.

1.1. **Le chlorure de calcium en paillettes**

- Son hygroscopicité importante lui permet de s'hydrater naturellement lorsque l'humidité relative de l'air est faible (\(\text{HRE}_{\text{CaCl}_2} = 45\% \), pour mémoire \(\text{HRE}_{\text{NaCl}} = 75\% \)). Ce produit doit donc être conservé impérativement en conteneur étanche (sacs, silos, etc.) sous peine de le voir prendre en masse sous forme de blocs de taille importante et rendu inutilisable.
- La température de protection la plus basse, obtenue à l'eutectique, est théoriquement de \(\text{TE}_{\text{CaCl}_2} = -56^\circ\text{C} \) pour un titre massique de la saumure de 33% (pour mémoire \(\text{TE}_{\text{NaCl}} = -21^\circ\text{C} \) pour 23%).

1.1.1. **Les situations météororoutières pouvant nécessiter l'emploi de ce produit**

- Une humidité relative de l'air faible, comprise entre 45 et 70% (certaines situations hivernales d'occurrences très faibles, dites de retour d'est).
- Une absence d'humidité mobilisable dans le milieu traité (neige très sèche, pluie en surfusion en très forte épaisseur, neige humide se congelant sur un sol très froid, etc.).

1.1.2. **Les risques liés à une mauvaise utilisation du chlorure de calcium en paillettes**

Les risques sont de deux types :

- **Lors de l'utilisation en traitement précuratif**
 La saumure de chlorure de calcium qui se forme à partir d'un épanlage présente une viscosité élevée (\(\text{CaCl}_2 : \nu_{\text{RC}} = 8,1 \text{ mPa.s}; \text{NaCl}: \nu_{\text{RC}} = 3,0 \text{ mPa.s} \)). Cette viscosité se traduit par une réduction du niveau d'adhérence offert à l'usager dans des proportions parfois importantes (-0,12 points SRT\(^3\) sur 0,70 de base, mesuré sur un revêtement de type BBSG). Cela est surtout observé à la suite d'un répandage en quantité excessive et/ou en l'absence de dilution par le phénomène météororoutier combattu (erreurs de dosages ou de mauvais réglages des saleuses). Cette situation peut, dans certains cas, mettre en péril\(^2\) la vie des usagers.

- **Dans certaines conditions météororoutières**
 Une dégradation du niveau d'adhérence offert à l'usager peut parfois apparaître lorsque la combinaison d'une température inférieure à 0°C et d'une humidité faible de l'air est associée à une quantité excessive de fondant sur la chaussée. Ce dernier se recristallise alors sur le revêtement dans sa forme hexahydratée, qui, lors de sa réhydratation (apport d'eau par condensation ou par précipitation), peut entraîner un phénomène de «savonnage» de la chaussée.

\(^2\)NORME NF P 18-578 Mesure de la rugosité d'une surface à l'aide du pendule de frottement
\(^3\)Des situations de ce type sont observées périodiquement. On peut citer
- Le cas en 1992/93 d'une autoroute périurbaine, où l'utilisation excessive (40 g/m\(^2\)) de CaCl\(_2\), en traitement précuratif, a entraîné une série d'accidents matériels impliquant plusieurs dizaines de véhicules. Il a été nécessaire de lessiver abondamment la chaussée au jet et de faire intervenir en urgence un engin spécialisé (type nettoyeur haute pression). Cela n'a été heureusement possible, que du fait des températures ambiantes et de surface de la chaussée positives, ce qui n'est pas toujours garanti en période hivernale.
- Le cas de l'utilisation sur un OA, de saumure de chlorure de calcium, rendue non corrosive par traitement à l'aide d'un inhibiteur de corrosion, (sans accident)
surface routière et une chute importante du niveau d’adhérence. Ce phénomène de «savonnage» fait l’objet d’analyses périodiques dans la littérature internationale. Il serait constaté plus fréquemment sur les bétons bitumineux très minces dont la macrotexture prononcée retient plus facilement le produit fondant.

1.1.3. En conclusion

L’utilisation de paillettes de chlorure de calcium, en l’état, est donc à réserver aux situations météororutières extrêmes en prenant la précaution d’en limiter les dosages répandus.

La généralisation de la bouillie de chlorure de sodium réduit très sensiblement l’intérêt du chlorure de calcium en technique de traitement hivernal. En conséquence, cette technique, sera toujours privilégiée par rapport au CaCl₂.

1.2. Le chlorure de calcium sous forme de saumure

La technique d’épandage de CaCl₂ par saumurage est pratiquement inexistante.

Seule la technique d’épandage en bouillie, mouillage du chlorure de sodium en grains est pratiqué par certains services. Cette technique améliorerait l’amorçage de la fusion de la glace à très basse température.

1.2.1. Les précautions à prendre lors de l’utilisation de la saumure de CaCl₂

Les mélanges de saumures de chlorure de calcium et de saumure de chlorure de sodium, dans les installations de stockage ou d’épandage, sont à proscrire.

La saumure de CaCl₂ est très avide d’eau. Si pour une raison ou une autre on vient la mettre en présence de saumure de NaCl, elle lui prend une partie de son eau (en augmentant le titre massique de cette dernière), ce qui provoque la recristallisation du NaCl sous forme de microcrisaux. Ceux-ci se déposent alors dans le bac ou le réservoir, en entraînant le colmatage des conduites, des pompes, des buses de giclage, etc. Cette situation a été observée de nombreuses fois dans les cas suivants.

- Lors d’une utilisation alternée et sans précaution de CaCl₂ et de NaCl dans le bac de saumure de la saleuse. La solution consiste à purger ce bac avant tout rechargement par un autre produit et à le lessiver périodiquement. Si l’on constate la formation d’un dépôt blanc laiteux épais, rincer le dispositif à l’eau chaude.

- Lors de la vidange du reste de saumure de CaCl₂ contenue dans le bac de la saleuse, dans le réservoir de NaCl attendant à l’installation de dissolution. Ce cas a été observé lorsque la saumure de CaCl₂ était tirée d’un réservoir – bâche ne possédant pas de libre accès pour y renvoyer le surplus non utilisé.

1.2.2. En conclusion

Le recours au chlorure de calcium sous forme de saumure ne se justifie qu’exceptionnellement. Les investissements nécessités pour stocker ce produit sont sans rapport avec les gains d’efficacité éventuels.

4 Des situations de ce type ont entraîné par le passé quelques accidents mortels (cf. contentieux entre l’Etat et des usagers, expertise, procès, etc). Elles avaient conduit le SETRA, à limiter l’usage de ce type de fondant aux seules conditions météororutières extrêmes lorsque le chlorure de sodium devenait inéfficace.
3.

Les sous-produits et coproduits proposés comme fondants routiers, les fondants routiers aux fonctionnalités nouvelles en quête de marché

2.1. Des sous-produits et coproduits salins, qualifiés rapidement de fondants

De nombreux secteurs industriels sont confrontés à des règles administratives qui les obligent au traitement de leurs «déchets» avant mise en décharge éventuelle. Ce traitement, d'un coût parfois élevé, les conduits à chercher à valoriser leurs sous-produits et coproduits salins sur la route. On peut citer quelques secteurs industriels ayant approché les exploitants routiers dans ce contexte avec quelques produits :

- Le chlorure de sodium ou le chlorure de calcium tiré des boues de lavage des fumées d'incinération des ordures ménagères.
- Le chlorure de sodium utilisé par les tanneries pour conserver temporairement les peaux avant transformation par les mégissiers.
- Le chlorure de sodium utilisé pour la conservation des poissons et la préparation des fromages.
- Le chlorure de sodium issu du traitement de la pomme de terre et de la betterave (amidon, etc.).

2.2. De nombreux produits conventionnels additivés, aux fonctionnalités nouvelles

Les fournisseurs / inventeurs de produits «nouveaux» rivalisent d'ingéniosité pour proposer des fondants routiers aux fonctionnalités nouvelles (inhibiteur de corrosion, non polluant, coloré pour indiquer l'existence du traitement, etc.). Ces produits et additifs sont très rarement identifiés. Leur identification est parfois jalousement gardée secret et les fiches de sécurité inexistantes.

2.3. L'attitude à tenir

Le recours actuel à des coproduits ou des sous-produits industriels comme fondants routiers, tels que ceux cités ci-dessus est déconseillé. En l’absence d’une procédure technico-administrative spécifique en cours d’élaboration, l’utilisation de tels produits fondants ne peut être tolérée que s’il existe un dossier technique suffisamment étayé permettant :

- de garantir l’innocuité du produit pour l’environnement, le milieu routier et les usagers,
- d’assurer la faisabilité d’une utilisation rationnelle du produit avec les moyens conventionnels du service.
NOTES D'INFORMATION SETRA
N° 2 Utilisation de la bouillie de sel - mai 1984
N° 53 Je sale moins, je sale mieux - décembre 1989
N° 64 Verglas mode d'emploi - février 1991
N° 67 Comportement hivernal de certaines surfaces routières - avril 1991
N° 81 Choisir et maîtriser la qualité des fondants - Une norme de spécification pour le chlorure de sodium utilisé comme fondant routier – février 1994

GUIDES MÉTHODOLOGIQUES ou TECHNIQUES SETRA
- Viabilité hivernale - définition des objectifs de qualité (juillet 92)
- Viabilité hivernale - aide à l'élaboration des DOVH (document provisoire octobre 1992)
- La bouillie de sel (janvier 1991)
- Le stockage des fondants pour la viabilité hivernale (mars 1992)

DOCUMENTS «Réseau Technique Viabilité Hivernale » SETRA
- Fondants routiers, les produits non corrosifs (sept 1998)
- Cahier des charges pour une procédure d'avis technique

PUBLICATIONS et COMUNICACES
- RGRA Fondants utilisés pour traiter les chaussées - Matériaux et techniques d'utilisation, (janvier 98)